基于大小模型协同的无人艇集群自主协作算法研究

Autonomous cooperation of USV swarms via large-small language model collaboration

  • 摘要:
    目的 针对大语言模型(LLM)在多智能体协同任务中应用思维链(CoT)推理所带来的推理延迟高、冗余信息多和实时性差等问题,提出一种基于大小模型协同的无人艇(USV)集群自主协作算法。
    方法 首先通过句级遮蔽测试与词级语义剪枝实现两级逻辑压缩,剥离CoT中冗余逻辑描述并生成轻量化的关键词序列,然后将这些关键词序列用于微调轻量化模型,使其具备从任务描述中生成CoT核心内容的能力。其次,引入多模型协作机制,使用3个8 B轻量模型并行生成候选决策方案,再由32 B验证模型进行置信度验证并快速筛选最优解,形成“压缩−生成−验证”闭环流程。
    结果 实验结果显示,在USV动态避障任务中,该方法将单步推理延迟从3.45 s压缩至1.53 s,任务成功率保持98.8%,超越了传统CoT推理加速方法。
    结论 所提方法在保证输出质量的同时显著降低了模型的推理延迟,为复杂海洋环境下的实时决策提供了高效的技术路径。

     

    Abstract:
    Objective To address the challenges of high reasoning latency, redundant logical content, and poor real-time performance when applying chain-of-thought (CoT) reasoning in large language models (LLM) to multi-agent collaborative tasks, this paper proposes an autonomous cooperation algorithm for unmanned surface vehicle (USV) swarms via large-small language model collaboration.
    Method Firstly, sentence-level masking and word-level semantic pruning are used to remove redundant information from CoT reasoning chains, resulting in lightweight keyword sequences. These sequences are then used to fine-tune lightweight models to enable them to generate essential CoT content from task descriptions. Secondly, a multi-model collaborative mechanism is introduced, in which three 8B lightweight models generate candidate decision solutions in parallel. A 32B-scale verifier model then performs confidence-based evaluation and selects the optimal solution, forming a closed-loop pipeline of “compression-generation-verification”.
    Results Experimental results in a dynamic obstacle avoidance scenario for unmanned surface vehicles (USVs) show that the proposed method reduces single-step reasoning latency from 3.45 seconds to 1.53 seconds, while maintaining a task success rate of 98.8%, and outperforming traditional CoT-based acceleration approaches.
    Conclusion The proposed method significantly reduces inference latency without compromising output quality, offering an effective technical solution for real-time decision-making in complex maritime environments.

     

/

返回文章
返回