基于代理模型的LNG船液舱泵塔结构混合变量多目标优化设计

Multi-objective optimization design for LNG cargo pump tower structure with mixed variables based on surrogate models

  • 摘要:
    目的 为使多载荷作用下的LNG船液舱泵塔结构同时满足结构强度、疲劳寿命和轻量化的设计要求,对泵塔结构的主尺度和尺寸变量进行优化分析。
    方法 首先,将代理模型技术与启发式优化算法相结合,建立泵塔优化问题数学模型,进行参数化建模,施加多物理场载荷,并使用最优拉丁超立方实验设计方法选取初始样本点库;然后,构建XGBoost代理模型,提出一种非精确自适应增加采样方法改进模型精度;接着,与NSGA-Ⅱ,MOPSO,MOAHA和NSWOA这4种启发式算法相结合,得到Pareto前沿解;最后,使用TOPSIS优劣解距离法比较Pareto前沿解集,得到相对最优解,并利用有限元直接计算进行验证。
    结果 结果显示,由XGBoost模型与NSWOA算法相结合的方法得到的优化设计方案相对最优,与初始设计方案相比结构重量减轻了19.63%,疲劳寿命提升了1.503倍。
    结论 所建立的一套完整有效的基于代理模型的混合变量LNG船液舱泵塔结构多目标优化设计流程可有效提高设计效率,能为LNG船液舱泵塔结构优化设计工作提供参考。

     

    Abstract:
    Objectives To overcome the monopoly of foreign patent technologies and to ensure that the pump-tower structure of LNG(Liquefied Natural Gas)carrier cargo tanks simultaneously satisfies structural strength, fatigue life, and lightweight design requirements under combined loading, this study performs optimization of the pump tower’s primary geometric dimensions and sectional size variables.
    Methods Surrogate modeling is integrated with heuristic optimization. A mathematical model of the pump-tower optimization problem is first formulated, followed by parametric modeling, multi-physics loading, and initial sample selection via optimal Latin hypercube sampling. An XGBoost-based surrogate is then constructed, and an inexact adaptive sampling strategy is proposed to enhance model accuracy. Finally, the surrogate is coupled with four heuristic algorithms—NSGA-II, MOPSO, MOAHA, and NSWOA—to obtain the Pareto front. The TOPSIS method is used to compare Pareto solution sets and identify a relatively optimal design, which is validated through direct finite-element analyses.
    Results The results show that the optimization design scheme obtained by combining the XGBoost model with the NSWOA algorithm is relatively optimal, the structural weight is reduced by 19.63% and the fatigue life is increased by a factor of 1.503.
    Conclusions A complete and effective multi-objective optimization workflow is established for the mixed-variable optimization of the LNG cargo-tank pump-tower structure based on surrogate models, improving design efficiency and providing a reference for optimization under combined loads.

     

/

返回文章
返回