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Fig. I Overview of biomimetic robotic remora
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Fig.2 Electronic design framework of biomimetic robotic remora
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Fig. 3 The principle diagram of pectoral fins ascending and descending mechanism of biomimetic robotic remora
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Fig. 10  Snapshots of descending test of biomimetic robotic remora
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Design and three-dimensional decoupled motion control
study of bio-inspired robotic remora

TAN Tong, YU Lin, GUO Kai, WANG Xuyang, QIAO Lei
School of Ocean and Civil Engineering, Shanghai Jiao Tong University, Shanghai 200240, China

Abstract: [ Objective ] Inspired by remora, a robotic remora that can adhere to diverse hosts and travel with
them over long distances with low energy consumption due to its unique adhesion ability, addresses the issue
of low endurance in the robotic fish. [ Methods ] A prototype with decoupled three-dimensional motion, high
mobility, and responsive vertical motion has been developed. Moreover, a wire-driven propulsion mechanism
and a pectoral fin ascending and descending mechanism have been adopted to achieve high mobility and de-
coupled motion. Additionally, a central pattern generator (CPG) is adopted to realize high biomimetic swim-
ming postures and smooth switching between motion modes. An active disturbance rejection controller
(ADRC) is developed to achieve robust, fast and precise heading control under model uncertainty and the envi-
ronment disturbance. The swimming, diving and heading control experiments are conducted. [ Results | The
results exhibits that the designed robotic remora owns the high mobility and responsive decoupled motion ca-
pabilities, with the maximum swimming speed of 0.17 m/s and max ascent and descent speed of 0.095 and
0.099 5 m/s respectively. The designed ADRC heading controller can achieve fast and precise control, which is
with better performance than the PID controller. [ Conclusion | This study, which presents the design of the
robotic remora and verifies the decoupled motion and the ADRC heading controller by experiments, lays the
foundation for the auto adhesion of the robotic remora.

Key words: autonomous underwater vehicle; marine robot; robotic remora; 3D decoupled motion; heading
control; motion performance
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